Image Labelling using Feature Learning and
Boltzmann Machine-Augmented CRFs

Charles Lo
Department of Electrical and Computer Engineering
University of Toronto
locharll@ece.utoronto.ca

Abstract

Image labelling is an important and challenging task in computer vision. Recent
bottom-up approaches to the problem have made use of deep neural networks
for feature learning, as well as fully-connected CRFs and Boltzmann machine-
augmented CRFs to improve labelling consistency. This work explores the com-
bination of these techniques to label images at superpixel granularity. We find that
a classifier based solely on superpixels of a finely segmented image does not per-
form well, but is greatly improved by the combination of a fully-connected CRF
augmented with a restricted Boltzmann machine.

1 Introduction

Semantic scene understanding is an important task for several applications such as in autonomous
robotics as well as medical imaging. However, pixel-level segmentation and labelling can be very
challenging; approaches must take into account both appearance and prior contextual knowledge to
obtain precise labelling.

The most common method of tackling the labelling problem is through a bottom-up approach. First,
pixels are classified using local appearance information taking into account texture and colour of
the different object categories. Second, local and global context are used to smooth the predications
across pixels. Local context encodes the knowledge that objects are generally contiguous across
pixels whereas global context relates sets of objects that commonly appear together as well as their
relative positions and shapes. The most common approach for ensuring consistency across pixels is
Conditional Random Fields (CRFs).

In this paper, a method combining advances in feature learning and augmented CRFs is applied
to the image labelling problem. Rather than designing appearance features by hand, a multilayer
neural network is applied directly to pixels. Deep neural networks have shown promise recently in
supervised classification tasks [[1} 2] and can automatically learn hierarchical layers features. The
pixel-wise, appearance-based labelling task is a large-scale classification problem and is thus well-
suited to deep neural networks.

The second technique applied in this paper is the use of Restricted Boltzmann Machines [3] (RBMs)
to augment CRFs. CRFs can efficiently ensure local consistency in labelling, but they do not perform
as well at encoding global information. Thus, the local connectivity of the CRF is augmented
with connections to global hidden units forming a system known as a semi-restricted Boltzmann
machine [4] (SRBM).

Finally, this work applies the previously discussed techniques on groups of plXClS called superpix-
els rather than individual pixels. Although there has been progress in improving performance of
inference and training in the aforementioned techniques, applying the techniques to high-definition
images or video can still be a challenge. Superpixels are formed by partitioning the image in a



way that maintains local appearance consistency and can dramatically reduce the computational
complexity of learning and inference.

2 Related Work

The majority of methods for image labelling use manually defined features that are known to work
well. However, there has been some investigation into automated feature learning for this task. Fara-
bet et al. [S]] investigate the use of deep convolutional neural networks to learn pixel-level features
that are then combined with segmentation and local CRF models to perform scene labelling. An im-
portant characteristic of their work is the use of multi-scale networks to incorporate context around a
pixel at multiple distances. This allows their classifier to perform well even without smoothing from
the CRF. In this work, a single receptive field of one superpixel is used and predictions are made at
the superpixel level rather than for individual pixels to reduce computational complexity.

The basic form of CRF for smoothing labels is a graph over labels of pixels where an edge exists
between labels of adjacent pixels as well as between a label and its associated pixel. Such a CRF
has the form:
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where X is the set of (super)pixels, Y is the set of labels and FE is the set of edges between labels. The
appearance potential v, is the contribution by a local classifier given information about the pixel
appearance while the pairwise potential 1), encourages local uniformity in the labels. Generally,
CRFs for image labelling have had connectivity limited to adjacent pixels. Recently, Krdhenbiihl et
al. [6]] have described a method for efficient inference in fully connected CRFs when using Gaussian
pairwise potentials. While these CRFs are able to ensure local smoothness, they do not capture other
contextual information in the scene such as the likelihood of certain classes co-occuring, shape of
the objects or relative location of them.

More recent works on image labelling have incorporated higher-order potentials into the CRF to
take such factors into account. In particular, leading image labelling schemes [7, 8] on the MSRC-
21 dataset [9] use a combination of potentials in hierarchal CRFs to encode prior information on
shape and co-occurance of classes within a scene.

An alternative approach for augmenting CRF models has been the use of restricted Boltzmann ma-
chines (RBMs) [3] to provide global features. Restricted Boltzmann machines (RBMs) [3]] are well
studied generative models where visible and hidden nodes form two partitions of a bipartite graph.
RBMs can be efficiently trained in an unsupervised manner to maximize the probability of a training
set on its visible nodes. Several existing works [[10} [11} |12]] have made use of RBMs to augment
local CRF connections with long-range information. In this work, we use RBMs over superixels as
in [10]], but do so over fully connected CRFs.

3 Local Classification

The problem of independently predicting labels of individual pixels is a challenging task. Generally,
features are designed to measure the appearance of a patch of pixels around the one of interest.
Two critical decisions to be made when performing local classification are determining the size of
patch and types of features to use. In this work, labelling is performed at superpixel granularity and
features are automatically learned from the raw pixels contained within the superpixels.

3.1 Superpixel segmentation

The problem of ensuring long-range consistency in labelling becomes difficult in large images. Even
a relatively small image of 320 x 213 resolution, would contain 68,160 pixel labelling predications.
Individually classifying each pixel is also computationally expensive in such a scheme when using
a complex classifier. Thus, many approaches perform image labelling at the level of superpixels.



Figure 1: SLIC superpixel image segmentation with 100 (left) and 500 (right) segments
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Figure 2: Superpixel patches resized into 16 x 16 windows

Simple linear iterative clustering (SLIC) [[13] was used to segment scenes into superpixels. This
method is based on local K-means clustering in LAB colour space and position. The algorithm is
very fast and has been shown to provide good performance at image segmentation tasks.

Each image was segmented into approximately 500 superpixels with a compactness setting of 25E|
This size presented a good trade-off between providing the local classifier with enough pixel data
to work with while being fine enough to discriminate borders between classes. An example of
segmentation with 100 and 500 superpixels is shown in Fig.[T] The images, overlaid with best-case
labelling of superpixels, demonstrate that 500 superpixels provides finer discrimination between the
road and tree in the scene.

3.2 Neural Network Feature Learning

SLIC segmentation produces partitions of irregular size and shape. To provide a standard receptive
field for the neural network feature learning system, the partitions found by segmentation were
isolated and scaled into 16 x 16 windows. All dataset images were resized to 320 x 213, and after
segmentation into 500 superpixels, the mean extent of each segment was found to be approximately
16 x 16. Some rescaled superpixels are shown in Fig. 2} these patches retain shape, colour and
texture information from the superpixel segmentation.

After experimenting with several neural network topologies, the best architecture had the form 768-
512-512-output with two hidden layers and a final one-hot encoded output layer. The colour pixels
in the receptive field were modelled as Gaussian units with zero mean and unit variance. All hidden
units were rectified linear units which we found worked better and faster than binary sigmoid
units. Finally, the output layer was modelled as a softmax:

exp(z wlmhm)
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where h,, is the m’th unit of the last hidden layer and w are the weights between the last hidden
layer and the label units.

To learn discriminative features, cross-entropy error was used as the loss function. Mini-
batch stochastic gradient descent with Nesterov momentum [I5] was used in combination with
dropout [16] to improve generalization performance. The parameters producing the best valida-
tion error were chosen and training was stopped after 500 epochs at which point validation error was
increasing.

!"The original SLIC author implementation was used in this work. In the proposal, the scikit-learn imple-
mentation was used with lower compactness. The current settings produced better results.



Figure 3: CRF-RBM schematic view

4 Consistent Scene Labelling

Predications made by local classifiers tend to be very noisy since they do not consider the labelling
of adjacent pixels or the global context of the scene. This work makes use of a CRF-RBM structure
to ensure consistent labelling; the architecture is shown in Fig. 3] The fully-connected CRF model
(Eqn. [T) is combined with an RBM model:
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where the visible nodes are multinomial random variables. For a particular label, [, the connections
between visible and hidden nodes are written w(®), visible biases are denoted d; and hidden node
biases e.

4.1 Conditional Random Field

Each superpixel ¢ consists of a set of colour pixels x; and is given a label y; € {1...L}. The
unary potential 1, (x;, y;) in this work is given directly from the neural network ¢, (z;,y; = 1) =
— Zm Wi b . Following [6]], two pairwise Potts potentials are used for local consistency:
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where p and c represent mean position and colour of the superpixels respectively.
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4.2 Restricted Boltzmann Machine

For each image, the number of superpixels and their positions can vary. To relate visible nodes of
the RBM to positions in the scene, a virtual visible layer (V) is used as in [[10]. Virtual visible
nodes are distributed across the scene in fixed locations to spatially anchor the RBM. Unlike the
previous work, superpixels are related continuously to each virtual visible node with a Gaussian
kernel w? (y;,v;) = exp(—||p; — pv;||?/(202)), where p; is the mean position of superpixel i and
pv; is the position of the virtual visible node j. Rectified linear units were used for the hidden nodes
rather than stochastic binary units. As with the pairwise and unary potentials, the potential projected
onto the label nodes from the RBM are weighted with a parameter w,..

4.3 Inference

Inference was performed using a mean-field approximation i.e. p(Y, H|X) ~

Hz/ Qi(ys) HkH Qr(hi). The iterative algorithm for inference is shown in Alg. |1} in practise
10 iterations of inference were used.

4.4 Learning

Piecewise learning was used in this work. First, the local classifier was trained to independently label
superpixels as discussed in section[3] Concurrently, the RBM was trained given the labels and pro-



Algorithm 1 Mean-field Inference
1: Initialize Q
2 Qi(yi) + 7 exp(—u(wi, yi))
1
3: Qi (hy) e max(0,ex + 32, 5wy (3 wfiy:)
4: while not converged do

(cj—cj )2

S Ky = 1) ¢ wr X exp(— 280 — B250)0,()
6 Ky =1) < we X, exp(— %)Qg«m

Ri(yi = 1) + wr 3o wihi (32, wjk Qi (hi)) + dij)

: Qiys = 1)  exp{—vu (@i, ys) — K (ys) — K7 (ys) + Ri(yi) }
9: Normalize Q;(y;)

10: Qulhi = 1) + max(0, e, + 32, wl) (3 (wlys))

jection matrix using contrastive divergence (CD-1). Finally, CRF weights were determined through
a search using a validation set. Further improvements could be made by performing mean-field con-
trastive divergence learning on the combined model, but training using the current implementation
proved too slow.

S Experiments

5.1 Datasets

There are a number of datasets available for image labelling. One of the most popular is the MSRC-
21 dataset [9] assembled by Microsoft Research. The most popular version consists of 591 images
with 23 classes. Two of the classes (mountain and horse) are infrequent and are often removed from
testing, resulting in a 21-class dataset. This dataset has a popular pre-defined split into training,
validation and test sets which were used in this work.

Another popular dataset is the Stanford Background Dataset [17]]. This dataset features 715 images,
hand labelled via the Amazon Mechanical Turk service. Unlike the MSRC-21 dataset, all scenes are
of the outdoors and there are fewer classes. This dataset was randomly split into 429(60%) training,
143(20%) validation and 143(20%) testing sets.

In both datasets, there are void or unknown regions in certain scenes where pixels do not belong to
a specific category. Pixels containing these labels are ignored during training and testing.

5.2 Implementation

All dataset images were resized to 320 x 213 to ensure a consistent position for the virtual visible
nodes. These virtual nodes were distributed with 32 nodes along the width and 21 along the height
of each image and o, was set to 10. The RBMs were trained with 100 hidden nodes.

After evaluating against the validation set, the values 0, = 60, 0. = 20,0, = 3, w; = 3, wy =1
and w, = 0.02 were found to give the best performance.

The implementations of deep neural network training and restricted Boltzmann machines were writ-
ten from scratch using gnumpy [18]] to make use of a GPU. The dense CRF code [[6] was modified
to include inference of the RBM.

5.3 Results

The per-class accuracies as well as pixel-level global and average class accuracies are reported in
tables [T and 2] Images were classified using the independent unary (neural network) classifier alone
as well as with the unary classifier augmented with a pairwise CRF and global RBM.

A clear trend in both of the datasets is that augmenting the independent labelling with CRFs and
RBMs dramatically improve classification performance. A sample test image is shown in Fig. [
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Table 1: Pixel-level accuracy (percent) on the MSRC-21 dataset
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Unary Only 9056737041620 [44([64.1|54.3
Unary + CRF 0456|7869 44710 (36| 67.7|57.2
Unary + RBM 87151(82]76 (41|80 0 [33]68.5]563
Unary + RBM + CRF | 89 |52 (8279 [42[79[ 0 [33(/69.0[57.0

Table 2: Pixel-level accuracy (percent) on the Stanford dataset

classified with the various schemes in this paper. It is clear that unary classifier on its own provides
very sporadic results since it has very little information to work with. In particular, the foreground
objects tend to confuse the classifier since they tend to have much more variation than the back-
ground. The pairwise CRF across labels smooths out the predictions but many mis-predictions
persist. Applying the global RBM provides context for the scene and reduces the labels to cow, sky
and grass. The full model with the CRF-RBM smooths out this final prediction and provides slightly
improves performance. Note that not all scenes benefit from the augmentations. In scenes where the
unary classifier performs very poorly the CRF and RBM may move the labelling even farther from
the ground truth.

Although the CRF and RBM improve performance of the unary classifier, the overall system still
does not perform close to the state of the art. For instance, Farabet et al. [5] report 81% global and
76% average accuracy on the Stanford dataset and Krihenbiihl et al. [6] report 86% global and 78%
average accuracy on the MSRC-21 dataset. This gap is due to the much better pixel-wise, unary
classifiers that the above works employ. Although Farabet et al. also use neural networks, they are
only able to achieve competitive classification accuracy once they employ multi-scale nets to take
in additional context. This result leads to the conclusion that RGB data from superpixels is not
sufficient to correctly label them and the input should be augmented to achieve better performance.

6 Conclusions and Future Work

This work explored the use of neural networks to learn local features from superpixels as well as
the combination of fully-connected CRFs and RBMs to improve consistency in labelling. We found
that the local classifier based solely on superpixel information performed relatively poorly,indicating
that there may not be enough information in the relatively small superpixels to produce good clas-
sification results. Future work should explore aggregating information from adjacent (super)pixels
and consider the trade-off in labelling accuracy when using larger superpixels.

Although the neural network results were relatively poor, this work did reveal dramatic improve-
ments to labelling performance with the CRF-RBM structure. Based on the obtained results, a
system with a more accurate unary classifier should be able to benefit even further from the labelling
consistency provided by the structure.



Figure 4: Example classification results: Unary only (top left), Unary+CRF (top right), Unary+RBM
(bottom left), Unary+CRF+RBM (bottom right), Ground Truth (bottom).
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