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Increasing demand for responsive, 
high-bandwidth applications

Sensor NetworksMobile ApplicationsData-intensive 
computing

 

Several previous works have predicted the evolution the internet to incorporate a growing number of 

mobile devices as well as sensors. In turn, the demands placed on the communications network, storage 

and computations that serve these devices will increase.  

Data from sensors such as motion detectors, temperature monitors or energy meters must be 

aggregated and processed. Although the data from individual sensors may be low-bandwidth, the 

aggregate of many sensors puts serious challenges on processing and computation. Autonomous 

sensors such as surveillance cameras could also require high bandwidth and their video feeds may be 

transcoded/compressed before they are stored or presented to a user.  

Mobile users will expect consistently responsive applications while the bandwidth and processing 

requirements increase. For instance, high-resolution video sharing or retrieval from a growing number 

of users will put strain on the network. 

A traditional approach with large datacenters, geographically distant from users, puts heavy 

requirements on the core network to ensure timely and high-capacity communication. 
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SAVI Smart Edge

Sensor NetworksMobile ApplicationsData-intensive 
computing

Edge Network

 

A solution explored being explored in SAVI is to use a smart edge network located at the service 

provider level. Such an edge contains processing and storage resources along with networking 

resources. Furthermore, SAVI explores the notion of virtualized resources where the capacity (in terms 

of communication, processing and storage) of the network can scale dynamically with demand. Such an 

approach provides a mechanism for energy-efficient computing where resources are only allocated as 

required.  

By providing resources at the edge, communication between users in the same service area can be low 

latency leading to responsive media sharing or sensor alerts. In addition, content and time-sensitive 

computations can be performed at the edge. For example, real-time querying of the positions of public 

transit or traffic conditions could be serviced at the edge. Finally, content destined for the core can be 

pre-processed at the edge to reduce the load on core networks. 

To support applications on the edge, SAVI integrates heterogeneous computing resources including X86 

machines, field programmable gate arrays (FPGAs) and graphics processing units (GPUs) as virtual 

resources. 
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Heterogeneous programming is hard

__kernel void proc( int* a, 
int*b, int *c)
{

…
*c = f(a,b);
…

}

Optimization for different compute
architectures

Coordination, data packaging and 
communication infrastructure

 

Although heterogeneous resources can be created on SAVI, developing applications on them is a 

challenge. In particular, two main difficulties are (1) the difficulty of designing high-performance 

algorithms across different architectures and (2) coordinating work across the resources. 

In general, writing high-performance programs is difficult. Even on a standard X86 machine, 

fundamental knowledge of the architecture such as vector instructions and cache sizes are necessary to 

achieve maximum performance. More esoteric computing substrates such as the massively parallel, but 

simple, cores in GPUs or the generic digital logic units of an FPGA can be even more difficult to design 

with. 

Once a computation has been designed for the different architectures, coordinating them is also non-

trivial. For instance, simply transferring the data to operate on is hard since data structures may use 

pointers that have no meaning across address spaces or the endianness of words may be different. 

Furthermore, distributing a block of work across multiple, heterogeneous workers is challenging 

especially if more workers can be added dynamically. In general, work should be distributed such that 

the total performance is maximized. 
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This Project: Heterogeneous Stream 
Computing Infrastructure
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This project investigates a class of computations called stream computing. Stream computing is a 

general model where computations are defined as a series of sequential operations. Applications that fit 

well into this model are filtering pipelines such as for signal processing. In addition, basic content 

queries and responses can be modeled in stream computing. 

In general, applications intended for the smart edge fit well into this scheme. Examples include sensor 

data processing, data compression before forwarding to the core and querying databases for local 

information. Furthermore, FPGAs can perform streaming computations very well if the operations can 

be scheduled into a hardware pipeline. 
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Goal: heterogeneous, dynamic task 
mapping
Task Graph (DAG)

Virtual Computing Resources

 

The goal in this project is then to come up with a method of mapping a stream application, typically 

represented as a directed acyclic graph (DAG), onto a set of heterogeneous computing resources. The 

solution should facilitate mapping onto heterogeneous nodes as well as be robust to changes in the 

available computing resources. For instance, if a new FPGA instance is booted, the system should be 

able to immediately re-allocate work onto it. 
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Model heterogeneous resources as 
generic compute nodes

 

To create a framework onto which applications are mapped, we can model each heterogeneous 

resource as a stream computing node. The basic properties of such are a node are: 

1) It can receive inputs from a number of sources 

2) It performs a task based on the input data 

3) It can stream the data to multiple sinks 

In this model, a compute node may be a full X86 VM, a single process operating on an X86 VM, a process 

passing data to a GPU or a slice of FPGA resources. Notice that this model requires a generic process to 

run on each type of hardware. For X86 instructions this is simply a matter of compiling the compute 

kernel. For GPUs, the kernel must be written a little more carefully, but in general it can execute any 

transformation. For an FPGA, it is possible to design hardware to execute any task, but the hardware 

must be configured in order to perform the task. Thus, it is assumed in this model that we have a 

mechanism for swapping tasks on FPGA hardware, either through re-configuration or simply 

instantiating a new FPGA instance with the appropriate hardware to perform the new task. 
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Build resource graph based on 
connectivity 

File 
I/O

Users

Ethernet

Ethernet

TCP

TCP

 

Now, given a set of virtual heterogeneous resources, we can construct a resource graph. This graph 

describes the connectivity of different resources and is based on the transports available. For instance, 

two X86 processes can be connected via File I/O or sockets. Two X86 machines may be connected via 

TCP or leverage a higher-level model such as a message passing infrastructure. An FPGA could be 

connected to other machines via raw Ethernet or possibly PCIe or even IP if the hardware is available. 

This model also includes connectivity for the users such that data can enter and exit the compute 

resources. 

The graph in general can be constructed a priori since some managing system would instantiate the 

nodes and so the connectivity and addresses of each resource relative to each other is known as they 

are created. 
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Finally, with the resource model in mind, we would like a method of distributing tasks onto them. The 

choice here is to use a globally-aware supervisor that examines the task graph of the application as well 

as the available resources and solves an optimization problem to map the tasks onto the virtual 

hardware. 

Processes in a task graph are logically separated by the functions that must be carried out at each step. 

For instance, greyscale conversion followed by edge detection would be two nodes connected in the 

task graph. However, the actual computations could be mapped onto a single compute resource by 

defining a function that encapsulates both processes. In the above example, tasks 3 and 4 are both 

mapped onto the leftmost hardware resource as a single process. 

To help the supervisor make decisions on how to map the tasks, each compute resource must have 

statistics or counters available that report the node’s status back to the supervisor. For instance, the 

node could report the latency along a communication channel between neighbor nodes as well as its 

compute time for a particular process and the energy it would consume. Thus, the applications are 

mapped onto the resources based on an optimization of some objective function. 

A final note is that the above image describes mapping a single application onto the resources, but the 

resources should be able to multitask and handle multiple applications simultaneously.  
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An analog to SDN

Supervisor

 

The previous design looks very similar to OpenFlow/SDN. In particular, it consists of a number of 

computing resources (switches) that forward information based on a globally determined route. The 

primary differences are: 

1) The “action” is a general function based on a piece of aggregate data rather than a packet in 

OpenFlow 

2) Routes are primary determined based on the application, not necessarily the ingress details, 

although this could be done in OpenFlow as well 

3) The computing model treats links such as File I/O as direct transport links. OpenFlow could 

support inter-process communication by having a software switch and making each process 

send and receive data from a virtual network port but this adds a layer of extra complexity. 

In general, the platform can be thought of as a generalization of OpenFlow. 

This view is interesting because we can understand how advantages of OpenFlow translate into 

heterogeneous computing. In particular, OpenFlow switches are very simple since the control is 

delegated to a controller. This has benefits for systems like FPGAs where control overhead can be 

expensive in terms of chip area. In addition, the global view allows complex mapping algorithms to 

assign tasks in a simplified manner rather than having each node attempt to find its best next hop 

independently. 
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Current Prototype Features

• X86 VMs and FPGA Slices

• Raw Ethernet Communication

• Single Input Single Output (Task Chains)

 

The prototype designed for this course supports a small subset of the desired features. In particular, the 

focus was on connecting X86 VMs and FPGAs. Thus, only raw Ethernet is supported as a transport and 

control layer. Further, only single input single output task graphs can be created. In other words, only 

chains of computations are allowed. 
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Compute Node Data Handling
Compute Header

TaskID Size Frag # Total 
Frags

Total 
Size

Input 
ID

Task
1000 Task 1000

Input Buffer

ACK

Compute Packet

 

Datapath 

Once a route has been established, compute data is sent through the path. Every compute frame has a 

standard header with a task ID as well as fields describing the fragmentation of a piece of data. Since a 

computation is designed to operate on a package of data such as a video frame or audio file, the system 

was designed to support fragmenting and collecting Ethernet frames into packages. The fields such as 

fragment ID and total fragments are used to piece together out of order Ethernet frames and store them 

into an input buffer. The task ID defines the forwarding path of the data for this node and will be 

described in the next page. 

Flow control in the system is maintained with a simple handshake. Every Ethernet frame in the system is 

acknowledged by the receiver. This allows a node to halt incoming traffic by not acknowledging new 

packets until its buffer has enough space to continue. 

The final field “Input ID” is used to differentiate between data coming on different input paths to the 

node. For instance a node might wish to add two streams together and so must keep track of which 

virtual port data arrives at. In the prototype this field is not yet used. 
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Compute Node Data Handling

Task
1000 Task 1000

Input BufferCompute Packet

Compute Header

TaskID Size Frag # Total 
Frags

Total 
Size

Input 
ID

Task ID Procedure Destination 
Node

1000 99 2

1001 105 3

Procedure 
99

ACK

 

When a compute package is pieced together, its task ID is consulted in a forwarding table that 

determines the procedure (action) and destination node(s). The hardware performs the procedure 

defined by the table on the package to produce an output. For now, procedures refer to pre-defined 

functions in a compute node. Note, a procedure could mean fetch some other data from a table based 

on the input buffer in the case of content retrieval. 
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Compute Node Data Handling

Task
1000 Task 1000

Input BufferCompute Packet

Compute Header

TaskID Size Frag # Total 
Frags

Total 
Size

Input 
ID

Task ID Procedure Destination 
Node

1000 99 2

1001 105 3

Procedure 
99

Node Type Address

2 ETH FA:BC:10:
32:55:19

3 ETH AA:B1:C3:
D9:EF:11

Task 1000
Task
1000

ACK

Output Buffer

 

Once the data has been processed, it is passed to an output buffer where the package is broken down 

into Ethernet frames for the next hop. In this step, a second table is used to translate the destination 

node to an Ethernet address for transmission. 

The idea of having a node ID to address translation was to isolate the resource graph from its physical 

implementation. In general, one could reach the destination node via different transports so the address 

could be a 32-bit IPv4, 128-bit Ipv6, 48-bit MAC address or an arbitrary length file reference. 
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Compute Node Control Messages
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.

 

Control Plane 

A supervisor can currently control a compute node in two ways. First, it can send an Ethernet frame to 

add entries to the Node->Address table. Second, it can add entries to the Task table. The control, data 

and acknowledgement frames are differentiated by different Ethernet types at the moment. 

Some missing functionality here is the ability to install procedures and probe counters. In the future, the 

ability to pass custom procedures that a node would perform is required to support generic 

computations. For an X86/GPU, the mechanism could be passing a shared object that is linked in with 

the runtime and called. For an FPGA, the procedure could be a custom bitstream that reconfigures a 

partition or instantiates a new one with the desired functionality. Statistics counters for current load, 

link quality, energy consumption and performance on particular tasks are also necessary for a supervisor 

to efficiently map tasks onto the resources. 
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The implementation of the X86 nodes follows the previous discussion closely and was implemented in 

C++ using pthreads and raw sockets. Three pthreads are used to allow the input, compute and output to 

operate concurrently. Thus, data can be pipelined through the application efficiently. The input thread 

allocates memory and reconstructs compute packages from Ethernet frames. It also handles updating 

the Node and Task tables. Once a compute packet is packaged, its details are passed on to the compute 

thread. Note that a pointer to the data package is passed and the data is not redundantly copied. The 

compute thread performs the operation specified by the procedure ID and passed the updated package 

onto the output thread. Note that currently, only the identity function is supported in the compute 

thread, although the harness is in place to easily add different transformations. Finally the output thread 

looks up the destination address via the Node table, shreds the package and sends out Ethernet frames. 

Shared memory FIFO queues are used to pass data between threads in a safe manner. With this scheme, 

there is not queue arbitration and the data is processed in order of arrival to the queue. Future schemes 

could investigate adding priority to certain tasks and using multiple queues. 
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FPGA Node Structure

• Leverage High-Level Synthesis

• Single FSM control flow

• Single compute procedure

• Restricted Node/Address Space 
to reduce memory 
requirements
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The FPGA hardware was designed using High-level synthesis. This tool converts C code to hardware 

making development much simpler. A reason to leverage HLS for FPGA nodes is the fact that compute 

procedures are very easily defined in HLS and a non-hardware designer can create hardware kernels 

quickly. This is important if many tasks are to be supported on the FPGA hardware. 

The current design has some limitations in that the input, compute and output are handled by a single 

sequential machine. Thus, the hardware handles one Ethernet frame completely before reading a new 

one. In addition, the Node and Task tables are reduced in size so they consume fewer memory 

resources. 

Many optimizations could be done to this design. In particular, the input and output could be re-written 

to operate concurrently to the compute. Also, hardware pipelining and refactoring could be used to get 

more parallelism. 

The current node is designed to make use of the virtual FPGA partial regions available in the SAVI 

testbed and thus has relatively few resources to store a compute package. Experiments could be done 

to use larger FPGA partitions or different FPGA platforms. 
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X86 Chain Test

User/ 
Control

VM

fa:16:3e:4d:5a:60
# node <ID> <TYPE> <ADDR>
node 1 1 fa:16:3e:20:76:e6
node 2 1 fa:16:3e:4d:5a:60
node 3 1 fa:16:3e:15:26:50
# task <ID> <PROC ID> <DST>
task 1 1 1
task 2 1 3
fa:16:3e:15:26:50
node 1 1 fa:16:3e:20:76:e6
node 2 1 fa:16:3e:4d:5a:60
node 3 1 fa:16:3e:15:26:50
#task <ID> <PROC ID> <DST>
task 2 1 1
task 3 1 1
#test <START ADDR> <TASK ID> <SIZE> 
#     <ITERATIONS>
test fa:16:3e:4d:5a:60 1 200 500

Node 1

Node 2

Node 3

Task 2 Config

Configuration File

 

To test the system, a basic test platform was put together chaining two X86 VMs together. The right side 

of the slide should the configuration file for the test which the controller used to send command frames 

to each node. Three tasks are defined: 

1) Node 1 -> Node 2 -> Node 1 (Loopback 1) 

2) Node 1 -> Node 2 -> Node 3 -> Node 1 (Chain) 

3) Node 1 -> Node 3 -> Node 1 (Loopback 2) 

The goal here was to examine the overhead involved in the system infrastructure. Each route was tested 

for an increasing compute package size over 500 iterations measuring roundtrip latency and throughput. 
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X86 Chain Results
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• For larger compute sizes, started noticing invalid/dropped packets

• Small (1 MTU) packets have negligible incremental latency

• Roundtrip (ping) between user and compute node ~0.5ms

 

The results are largely as expected. For the most part, the latency when traversing two compute nodes 

(Chain) is twice the latency of traversing a single node. Larger packets are streamed across the system 

leading to an increase in throughput. For instance, it’s faster to copy a single large buffer in memory 

than many small ones. After a package size of about 50 KB, dropped packets were noticed and so results 

for higher transmission speeds were not reliable. The raw Ethernet protocol provides basic flow control 

but is not robust to packet loss so the system can stall. 
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FPGA Status

Add Nodes Add Tasks Compute Packet

ACK Add TasksACK Add Nodes
ACK

Compute Pkt
Forward 
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Unfortunately the FPGA partition was not working in hardware. It would have been very instructive to 

construct a similar latency/throughput graph for FPGA nodes to see where the advantages and 

disadvantages of the different architectures lie. 

The last status on the FPGA accelerator is (perceived) functionality in hardware simulation and the 

ability to received ACKs on SAVI. However, the translation table is mangled and so the results are not 

forwarded correctly to the receiver. The slide shows the functionality in simulation. We can see that the 

acknowledgement paths are operating as nodes and tasks are added. In addition the compute frame is 

forwarded as expected. 

For basic forwarding, there are about 10 cycles between the compute data being received and being 

sent. Operating at 160MHz, that is 6.25ns per cycle and so a latency of about 62.5ns. Note that this 

speed is only within the custom logic and the packet still needs to traverse some static hardware and the 

Ethernet MAC. However, this result is very promising and the FPGA should be able to obtain much lower 

latency than the X86 VM. 
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Summary

• Stream Processing Infrastructure over Virtual 
Heterogeneous Resources

• Initial Prototype of X86 Compute Node

• Partial Prototype of FPGA Compute Node

 

In summary, the work in this project involved developing a method of mapping streaming programs 

onto heterogeneous hardware. The proposed architecture turned to be very similar to OpenFlow and it 

would be very interesting to develop extensions to OpenFlow to support more general stream 

computing. 

The developed system has a functioning X86 compute nodes that can be chained together in an 

arbitrary topologies using a simple Ethernet command interface. An FPGA compute node has been 

developed but is not yet functional in hardware. 

 


