

Heterogeneous Stream
Computing in SAVI

ECE1548 Course Project

Charles Lo

12/4/2013

Slide 2

Increasing demand for responsive,
high-bandwidth applications

Sensor NetworksMobile ApplicationsData-intensive
computing

Several previous works have predicted the evolution the internet to incorporate a growing number of

mobile devices as well as sensors. In turn, the demands placed on the communications network, storage

and computations that serve these devices will increase.

Data from sensors such as motion detectors, temperature monitors or energy meters must be

aggregated and processed. Although the data from individual sensors may be low-bandwidth, the

aggregate of many sensors puts serious challenges on processing and computation. Autonomous

sensors such as surveillance cameras could also require high bandwidth and their video feeds may be

transcoded/compressed before they are stored or presented to a user.

Mobile users will expect consistently responsive applications while the bandwidth and processing

requirements increase. For instance, high-resolution video sharing or retrieval from a growing number

of users will put strain on the network.

A traditional approach with large datacenters, geographically distant from users, puts heavy

requirements on the core network to ensure timely and high-capacity communication.

Slide 3

SAVI Smart Edge

Sensor NetworksMobile ApplicationsData-intensive
computing

Edge Network

A solution explored being explored in SAVI is to use a smart edge network located at the service

provider level. Such an edge contains processing and storage resources along with networking

resources. Furthermore, SAVI explores the notion of virtualized resources where the capacity (in terms

of communication, processing and storage) of the network can scale dynamically with demand. Such an

approach provides a mechanism for energy-efficient computing where resources are only allocated as

required.

By providing resources at the edge, communication between users in the same service area can be low

latency leading to responsive media sharing or sensor alerts. In addition, content and time-sensitive

computations can be performed at the edge. For example, real-time querying of the positions of public

transit or traffic conditions could be serviced at the edge. Finally, content destined for the core can be

pre-processed at the edge to reduce the load on core networks.

To support applications on the edge, SAVI integrates heterogeneous computing resources including X86

machines, field programmable gate arrays (FPGAs) and graphics processing units (GPUs) as virtual

resources.

Slide 4

Heterogeneous programming is hard

__kernel void proc(int* a,
int*b, int *c)
{

…
*c = f(a,b);
…

}

Optimization for different compute
architectures

Coordination, data packaging and
communication infrastructure

Although heterogeneous resources can be created on SAVI, developing applications on them is a

challenge. In particular, two main difficulties are (1) the difficulty of designing high-performance

algorithms across different architectures and (2) coordinating work across the resources.

In general, writing high-performance programs is difficult. Even on a standard X86 machine,

fundamental knowledge of the architecture such as vector instructions and cache sizes are necessary to

achieve maximum performance. More esoteric computing substrates such as the massively parallel, but

simple, cores in GPUs or the generic digital logic units of an FPGA can be even more difficult to design

with.

Once a computation has been designed for the different architectures, coordinating them is also non-

trivial. For instance, simply transferring the data to operate on is hard since data structures may use

pointers that have no meaning across address spaces or the endianness of words may be different.

Furthermore, distributing a block of work across multiple, heterogeneous workers is challenging

especially if more workers can be added dynamically. In general, work should be distributed such that

the total performance is maximized.

Slide 5

This Project: Heterogeneous Stream
Computing Infrastructure

Contrast
Enhancement

Edge
Detection

Compression

Video
Frame

Processed
Frame

Fetch
Content

Content
Query

Processed
Frame

Signal Processing

Query Handling

This project investigates a class of computations called stream computing. Stream computing is a

general model where computations are defined as a series of sequential operations. Applications that fit

well into this model are filtering pipelines such as for signal processing. In addition, basic content

queries and responses can be modeled in stream computing.

In general, applications intended for the smart edge fit well into this scheme. Examples include sensor

data processing, data compression before forwarding to the core and querying databases for local

information. Furthermore, FPGAs can perform streaming computations very well if the operations can

be scheduled into a hardware pipeline.

Slide 7

Goal: heterogeneous, dynamic task
mapping
Task Graph (DAG)

Virtual Computing Resources

The goal in this project is then to come up with a method of mapping a stream application, typically

represented as a directed acyclic graph (DAG), onto a set of heterogeneous computing resources. The

solution should facilitate mapping onto heterogeneous nodes as well as be robust to changes in the

available computing resources. For instance, if a new FPGA instance is booted, the system should be

able to immediately re-allocate work onto it.

Slide 9

Model heterogeneous resources as
generic compute nodes

To create a framework onto which applications are mapped, we can model each heterogeneous

resource as a stream computing node. The basic properties of such are a node are:

1) It can receive inputs from a number of sources

2) It performs a task based on the input data

3) It can stream the data to multiple sinks

In this model, a compute node may be a full X86 VM, a single process operating on an X86 VM, a process

passing data to a GPU or a slice of FPGA resources. Notice that this model requires a generic process to

run on each type of hardware. For X86 instructions this is simply a matter of compiling the compute

kernel. For GPUs, the kernel must be written a little more carefully, but in general it can execute any

transformation. For an FPGA, it is possible to design hardware to execute any task, but the hardware

must be configured in order to perform the task. Thus, it is assumed in this model that we have a

mechanism for swapping tasks on FPGA hardware, either through re-configuration or simply

instantiating a new FPGA instance with the appropriate hardware to perform the new task.

Slide 10

Build resource graph based on
connectivity

File
I/O

Users

Ethernet

Ethernet

TCP

TCP

Now, given a set of virtual heterogeneous resources, we can construct a resource graph. This graph

describes the connectivity of different resources and is based on the transports available. For instance,

two X86 processes can be connected via File I/O or sockets. Two X86 machines may be connected via

TCP or leverage a higher-level model such as a message passing infrastructure. An FPGA could be

connected to other machines via raw Ethernet or possibly PCIe or even IP if the hardware is available.

This model also includes connectivity for the users such that data can enter and exit the compute

resources.

The graph in general can be constructed a priori since some managing system would instantiate the

nodes and so the connectivity and addresses of each resource relative to each other is known as they

are created.

Slide 11

Dynamic Mapping

1

43

2

5

2

5

13,4

Task Model

Task Assignment

Resource Model

System Supervisor

in out

out

in

Finally, with the resource model in mind, we would like a method of distributing tasks onto them. The

choice here is to use a globally-aware supervisor that examines the task graph of the application as well

as the available resources and solves an optimization problem to map the tasks onto the virtual

hardware.

Processes in a task graph are logically separated by the functions that must be carried out at each step.

For instance, greyscale conversion followed by edge detection would be two nodes connected in the

task graph. However, the actual computations could be mapped onto a single compute resource by

defining a function that encapsulates both processes. In the above example, tasks 3 and 4 are both

mapped onto the leftmost hardware resource as a single process.

To help the supervisor make decisions on how to map the tasks, each compute resource must have

statistics or counters available that report the node’s status back to the supervisor. For instance, the

node could report the latency along a communication channel between neighbor nodes as well as its

compute time for a particular process and the energy it would consume. Thus, the applications are

mapped onto the resources based on an optimization of some objective function.

A final note is that the above image describes mapping a single application onto the resources, but the

resources should be able to multitask and handle multiple applications simultaneously.

Slide 12

An analog to SDN

Supervisor

The previous design looks very similar to OpenFlow/SDN. In particular, it consists of a number of

computing resources (switches) that forward information based on a globally determined route. The

primary differences are:

1) The “action” is a general function based on a piece of aggregate data rather than a packet in

OpenFlow

2) Routes are primary determined based on the application, not necessarily the ingress details,

although this could be done in OpenFlow as well

3) The computing model treats links such as File I/O as direct transport links. OpenFlow could

support inter-process communication by having a software switch and making each process

send and receive data from a virtual network port but this adds a layer of extra complexity.

In general, the platform can be thought of as a generalization of OpenFlow.

This view is interesting because we can understand how advantages of OpenFlow translate into

heterogeneous computing. In particular, OpenFlow switches are very simple since the control is

delegated to a controller. This has benefits for systems like FPGAs where control overhead can be

expensive in terms of chip area. In addition, the global view allows complex mapping algorithms to

assign tasks in a simplified manner rather than having each node attempt to find its best next hop

independently.

Slide 14

Current Prototype Features

• X86 VMs and FPGA Slices

• Raw Ethernet Communication

• Single Input Single Output (Task Chains)

The prototype designed for this course supports a small subset of the desired features. In particular, the

focus was on connecting X86 VMs and FPGAs. Thus, only raw Ethernet is supported as a transport and

control layer. Further, only single input single output task graphs can be created. In other words, only

chains of computations are allowed.

Slide 15

Compute Node Data Handling
Compute Header

TaskID Size Frag # Total
Frags

Total
Size

Input
ID

Task
1000 Task 1000

Input Buffer

ACK

Compute Packet

Datapath

Once a route has been established, compute data is sent through the path. Every compute frame has a

standard header with a task ID as well as fields describing the fragmentation of a piece of data. Since a

computation is designed to operate on a package of data such as a video frame or audio file, the system

was designed to support fragmenting and collecting Ethernet frames into packages. The fields such as

fragment ID and total fragments are used to piece together out of order Ethernet frames and store them

into an input buffer. The task ID defines the forwarding path of the data for this node and will be

described in the next page.

Flow control in the system is maintained with a simple handshake. Every Ethernet frame in the system is

acknowledged by the receiver. This allows a node to halt incoming traffic by not acknowledging new

packets until its buffer has enough space to continue.

The final field “Input ID” is used to differentiate between data coming on different input paths to the

node. For instance a node might wish to add two streams together and so must keep track of which

virtual port data arrives at. In the prototype this field is not yet used.

Slide 16

Compute Node Data Handling

Task
1000 Task 1000

Input BufferCompute Packet

Compute Header

TaskID Size Frag # Total
Frags

Total
Size

Input
ID

Task ID Procedure Destination
Node

1000 99 2

1001 105 3

Procedure
99

ACK

When a compute package is pieced together, its task ID is consulted in a forwarding table that

determines the procedure (action) and destination node(s). The hardware performs the procedure

defined by the table on the package to produce an output. For now, procedures refer to pre-defined

functions in a compute node. Note, a procedure could mean fetch some other data from a table based

on the input buffer in the case of content retrieval.

Slide 17

Compute Node Data Handling

Task
1000 Task 1000

Input BufferCompute Packet

Compute Header

TaskID Size Frag # Total
Frags

Total
Size

Input
ID

Task ID Procedure Destination
Node

1000 99 2

1001 105 3

Procedure
99

Node Type Address

2 ETH FA:BC:10:
32:55:19

3 ETH AA:B1:C3:
D9:EF:11

Task 1000
Task
1000

ACK

Output Buffer

Once the data has been processed, it is passed to an output buffer where the package is broken down

into Ethernet frames for the next hop. In this step, a second table is used to translate the destination

node to an Ethernet address for transmission.

The idea of having a node ID to address translation was to isolate the resource graph from its physical

implementation. In general, one could reach the destination node via different transports so the address

could be a 32-bit IPv4, 128-bit Ipv6, 48-bit MAC address or an arbitrary length file reference.

Slide 18

Compute Node Control Messages

Add Node Table Entries

OpCode Number of Nodes to Add

NodeID Address Type Address

NodeID Address Type Address

NodeID Address Type Address

OpCode Number of Tasks to Add

TaskID Procedure ID Destination ID

TaskID Procedure ID Destination ID

TaskID Procedure ID Destination ID

Add Task Table Entries

.

.

.

.

.

.

Control Plane

A supervisor can currently control a compute node in two ways. First, it can send an Ethernet frame to

add entries to the Node->Address table. Second, it can add entries to the Task table. The control, data

and acknowledgement frames are differentiated by different Ethernet types at the moment.

Some missing functionality here is the ability to install procedures and probe counters. In the future, the

ability to pass custom procedures that a node would perform is required to support generic

computations. For an X86/GPU, the mechanism could be passing a shared object that is linked in with

the runtime and called. For an FPGA, the procedure could be a custom bitstream that reconfigures a

partition or instantiates a new one with the desired functionality. Statistics counters for current load,

link quality, energy consumption and performance on particular tasks are also necessary for a supervisor

to efficiently map tasks onto the resources.

Slide 19

Output threadCompute threadInput thread

X86 Node Structure

Command
Handler

Task Buffers

Procedure
1

Procedure
1

Procedure
1

Task ID
Procedure ID
Destination Node
Data

The implementation of the X86 nodes follows the previous discussion closely and was implemented in

C++ using pthreads and raw sockets. Three pthreads are used to allow the input, compute and output to

operate concurrently. Thus, data can be pipelined through the application efficiently. The input thread

allocates memory and reconstructs compute packages from Ethernet frames. It also handles updating

the Node and Task tables. Once a compute packet is packaged, its details are passed on to the compute

thread. Note that a pointer to the data package is passed and the data is not redundantly copied. The

compute thread performs the operation specified by the procedure ID and passed the updated package

onto the output thread. Note that currently, only the identity function is supported in the compute

thread, although the harness is in place to easily add different transformations. Finally the output thread

looks up the destination address via the Node table, shreds the package and sends out Ethernet frames.

Shared memory FIFO queues are used to pass data between threads in a safe manner. With this scheme,

there is not queue arbitration and the data is processed in order of arrival to the queue. Future schemes

could investigate adding priority to certain tasks and using multiple queues.

Slide 20

FPGA Node Structure

• Leverage High-Level Synthesis

• Single FSM control flow

• Single compute procedure

• Restricted Node/Address Space
to reduce memory
requirements

Packet
In

Perform
Compute

Send
ACK

CMD Pkt
Compute

Pkt

Update
Tables

Forward
Packet

Wait ACK

The FPGA hardware was designed using High-level synthesis. This tool converts C code to hardware

making development much simpler. A reason to leverage HLS for FPGA nodes is the fact that compute

procedures are very easily defined in HLS and a non-hardware designer can create hardware kernels

quickly. This is important if many tasks are to be supported on the FPGA hardware.

The current design has some limitations in that the input, compute and output are handled by a single

sequential machine. Thus, the hardware handles one Ethernet frame completely before reading a new

one. In addition, the Node and Task tables are reduced in size so they consume fewer memory

resources.

Many optimizations could be done to this design. In particular, the input and output could be re-written

to operate concurrently to the compute. Also, hardware pipelining and refactoring could be used to get

more parallelism.

The current node is designed to make use of the virtual FPGA partial regions available in the SAVI

testbed and thus has relatively few resources to store a compute package. Experiments could be done

to use larger FPGA partitions or different FPGA platforms.

Slide 22

X86 Chain Test

User/
Control

VM

fa:16:3e:4d:5a:60
node <ID> <TYPE> <ADDR>
node 1 1 fa:16:3e:20:76:e6
node 2 1 fa:16:3e:4d:5a:60
node 3 1 fa:16:3e:15:26:50
task <ID> <PROC ID> <DST>
task 1 1 1
task 2 1 3
fa:16:3e:15:26:50
node 1 1 fa:16:3e:20:76:e6
node 2 1 fa:16:3e:4d:5a:60
node 3 1 fa:16:3e:15:26:50
#task <ID> <PROC ID> <DST>
task 2 1 1
task 3 1 1
#test <START ADDR> <TASK ID> <SIZE>
<ITERATIONS>
test fa:16:3e:4d:5a:60 1 200 500

Node 1

Node 2

Node 3

Task 2 Config

Configuration File

To test the system, a basic test platform was put together chaining two X86 VMs together. The right side

of the slide should the configuration file for the test which the controller used to send command frames

to each node. Three tasks are defined:

1) Node 1 -> Node 2 -> Node 1 (Loopback 1)

2) Node 1 -> Node 2 -> Node 3 -> Node 1 (Chain)

3) Node 1 -> Node 3 -> Node 1 (Loopback 2)

The goal here was to examine the overhead involved in the system infrastructure. Each route was tested

for an increasing compute package size over 500 iterations measuring roundtrip latency and throughput.

Slide 23

X86 Chain Results

0

5

10

15

20

25

30

35

40

0 10000 20000 30000 40000 50000 60000

R
o

u
n

d
tr

ip
 L

a
te

n
cy

 (m
s)

Size of Compute Packets (bytes)

Route Latency

Loopback 1

Chain

Loopback 2

0

1

2

3

4

5

6

0 10000 20000 30000 40000 50000 60000

A
p

p
ro

x.
 T

h
ro

u
gh

p
u

t
(M

B
/s

)

Size of Compute Packets (bytes)

Route Throughput

Loopback 1

Chain

Loopback 2

• For larger compute sizes, started noticing invalid/dropped packets

• Small (1 MTU) packets have negligible incremental latency

• Roundtrip (ping) between user and compute node ~0.5ms

The results are largely as expected. For the most part, the latency when traversing two compute nodes

(Chain) is twice the latency of traversing a single node. Larger packets are streamed across the system

leading to an increase in throughput. For instance, it’s faster to copy a single large buffer in memory

than many small ones. After a package size of about 50 KB, dropped packets were noticed and so results

for higher transmission speeds were not reliable. The raw Ethernet protocol provides basic flow control

but is not robust to packet loss so the system can stall.

Slide 24

FPGA Status

Add Nodes Add Tasks Compute Packet

ACK Add TasksACK Add Nodes
ACK

Compute Pkt
Forward

Compute Pkt

Unfortunately the FPGA partition was not working in hardware. It would have been very instructive to

construct a similar latency/throughput graph for FPGA nodes to see where the advantages and

disadvantages of the different architectures lie.

The last status on the FPGA accelerator is (perceived) functionality in hardware simulation and the

ability to received ACKs on SAVI. However, the translation table is mangled and so the results are not

forwarded correctly to the receiver. The slide shows the functionality in simulation. We can see that the

acknowledgement paths are operating as nodes and tasks are added. In addition the compute frame is

forwarded as expected.

For basic forwarding, there are about 10 cycles between the compute data being received and being

sent. Operating at 160MHz, that is 6.25ns per cycle and so a latency of about 62.5ns. Note that this

speed is only within the custom logic and the packet still needs to traverse some static hardware and the

Ethernet MAC. However, this result is very promising and the FPGA should be able to obtain much lower

latency than the X86 VM.

Slide 25

Summary

• Stream Processing Infrastructure over Virtual
Heterogeneous Resources

• Initial Prototype of X86 Compute Node

• Partial Prototype of FPGA Compute Node

In summary, the work in this project involved developing a method of mapping streaming programs

onto heterogeneous hardware. The proposed architecture turned to be very similar to OpenFlow and it

would be very interesting to develop extensions to OpenFlow to support more general stream

computing.

The developed system has a functioning X86 compute nodes that can be chained together in an

arbitrary topologies using a simple Ethernet command interface. An FPGA compute node has been

developed but is not yet functional in hardware.

